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Tunnelling in the equilibrium state of a spin-boson model? 

M Fames$, B Nachtergaele§ and A Verbeure 
Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, B-3030 Leuven, 
Belgium 

Received 16 September 1987 

Abstract. For a two-level spin-boson system describing a quantum particle in a double-well 
potential coupled to a quantised radiation field, we prove the unicity of the equilibrium 
state a t  all positive temperatures.  We are  also able to compute rigorously the transition 
probability between the thermal wavefunctions of the two wells. 

1. Introduction 

Spin-boson models are studied in many areas of physics, such as solid state physics, 
quantum chemistry and problems of quantum tunnelling in superconducting devices. 
A fairly good introduction to their physics can be found in [l] .  There are many 
different types of models in the literature. Here we are interested in the following 
Hamiltonian: 

H = pa, + d k  e (  k ) a ; a k  + a, dkA(k) (a ;  + a k )  (1) 5, i: 
describing a two-level atom in a boson field; ay, a,, U, are the Pauli matrices and 
a;, ak the boson creation and annihilation operators. In most applications, the func- 
tions E and A behave like e (  k )  = Ik/, A ( k )  = Ikl' ' at k = 0. More generally, we assume 
that E and A are R-valued continuous functions satisfying the following conditions, 
including the physically interesting case: 

E(k) 3 ClklY c, y € R +  for large lkl ( 2 )  
0 < E (  k )  C'/kl  C' E iw' for small 1 k /  # 0. 

The Hamiltonian H originates from the description of a particle in a double-well 
potential V ( x )  with potential barrier of height A. The Schrodinger problem has two 
lowest energy levels E,, with wavefunctions CL, = (1/v'2)(CLL+ $ R ) r  where (LL,  GR are 
wavepackets localised in the left and right wells. The ground state $+ is non-degenerate, 
exhibits reflection symmetry (x + -x) and, because A is finite, describes tunnelling 
between the two wells. The question is now whether this tunnelling is decreased or 
enhanced when friction is added. 

+ Presented at the conference on Mathemarical Problems in Srarisrical Mechanics held at Heriot-Watt 
University on 3-5 August 1987. 
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To arrive at the Hamiltonian ( 1 )  one makes a two-level approximation, i.e. one 
replaces the above Schrodinger particle by puy with -2p = IE, - E- /  and puts it in a 
boson bath with linear coupling. 

There are many other models related in one or another sense to the above one. 
Here we limit ourselves to mentioning the Dicke-Maser models (one-mode case [ 2 ]  
and infinite-mode case [3]), which are lattice formulations of this problem. 

As far as we know, there exist only a few rigorous results for the model (1). In 
[4] some results on the spectrum of the proposed Hamiltonian are discussed, and  in 
[ 51 a thorough analysis is made of the finite-mode approximation of the Hamiltonian. 
In particular, the Hartree-Fock solutions are found to show breaking of symmetry 
under the condition p < 2 j  ( A ( k ) ' / e ( k ) )  dk. In [6] the ground state of the model is 
partially analysed. By functional integration techniques it is shown that no spontaneous 
symmetry breaking appears if A / &  is square integrable (in fact in k = 0). Otherwise, 
if the coupling A is large enough there is symmetry breaking. 

Our contribution [7] consists in the computation of all temperature states and hence 
in actually solving the problem for T >  0. Our method consists in considering the term 
pu, as a perturbation. This point of view was already present in [4, 51. Then we work 
towards a rigorous formulation of the K M S  equation for the so-called unperturbed 
model and we are able to solve it completely. Then the perturbation theory is applied 
at the level of the cyclic vector of the unperturbed system. The proof is based on the 
stability theory of K M S  states under symmetry transformations. Here we give an  
independent proof which looks mathematically more elegant, but is physically less 
transparent (see § 3). Section 4 contains the explicit rigorous computation of the 
transition probability between the thermal wavefunctions of the two minima, a result 
which was announced in [8]. For all temperatures T>O the transition probability 
turns out to be strictly larger than zero. This result is used to get more physical insight 
in the phenomenon for finite temperatures as well as for the ground state. 

2. Mathematical structure 

Because of the type of system, an interaction between a spin and  a Bose field, the 
algebra of observables is of the form 

B = d @ M >  (3) 
where d is a C* algebra and M 2  the set of 2 x 2  complex matrices. 

A general element of 93 is of the form 

and a state o of 93 can be described by a set { U ,  1 i, j = 1,2} of linear functionals of 
d. A useful notation is the following: 

Then the expectation value of the observable X is computed by 

U : x -f w ( X )  = 2 W C ( X , ) .  
' . ] = I  
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A functional w of the form ( 5 )  is a state of 23 if and  only if it is normalised and 
positive, which is expressed by the following conditions on the functionals U,, of d: 

w , , ( l ) + w p ( I )  = 1 

w,,(x*x) 3 0 

w,z(x) = w21(x* )  

I w I 2(  x*)' 1 1 1 I ( X* x 1 ozz(y *JJ  ) 

for all x, y E d. 
First we treat the particular case of (1)  with F = 0, i.e. 

We now specify d. 

on (w vanishing on a neighbourhood of zero with respect to the scalar product 
Let 2- be the completion of the continuous complex functions of compact support 

Now for d we choose the CCR - C* algebra A( %-) which is generated by the Weyl 
operators 

W ( f  1 

W f ) *  = w-f) 
W f )  W g )  = W ( f + g )  exP(-i Im(f, g ) )  

f €  x- c L'(Iw) 

satisfying the commutation relations 

with 

( f ,  g )  = I d k f ( k ) g ( k ) .  

Therefore the C* algebra of observables 9 is given by A( %-) 0 M 2  and we define the 
unperturbed dynamics ( F  = 0) by a group of *-automorphisms  CY:),,^ on 92. We define 
CY: on the generators of 93 as follows: 

where 

U* = f( u., * ic+, ) 

CY:( U:) = U: ( 8 b )  
cy:( W ( f ) )  = W(e"Y) exp[2iv2 Re(A/&, (e"'- llf)]. ( 8 ~ )  

Because of the conditions (2) and the special choice of sd = A( 2-), the evolution cy: 
is well defined on the C* algebra 9. 

In order to define the full dynamics we limit ourselves to a particular class of states 
satisfying the following conditions. 

( i )  Regularity of the states, i.e. for all f, g €  2-, the map 

z E R + w , , ( W ( f + z g ) )  
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is analytic. This condition implies the existence of fields and of the correlation 
functions: 

w , j ( a " ( f i ) .  . . a " ( f , ) )  f k  E %'-; k =  1,. . . , n ;  n E N  

where a #  stands for a or a'. 

C ER' such that for all finite sets { f , ,  . . . , f n }  c %-: 
(i i)  Continuity of the correlation functions: we suppose that there exists a constant 

where b ( f )  = a ' ( f )  + a ( f )  for all . f ~  %-. 
For any state w of 93 we consider its G N S  triplet (Xu, T,, flu).  For notational 

convenience we identify the algebra and the representation for the elements of 9, i.e. 
x = 7ru(x) for all x E 93, We denote by 93" the von Neumann algebra generated by 

(iii) Existence of the dynamics: we assume that the dynamics a: extends to a 
weakly continuous one-parameter group of *-automorphisms of 93" for all states under 
consideration. 

From condition (iii) it follows that the group {ay, t E R} defines an infinitesimal 
generator So: a: = exp(ir8,) such that So is formally given by 

T u ( 9 ) .  

So = [ H o ,  .I 
where Ho is given by ( 7 ) .  

We now define the full model using the Dyson expansion: for all X E  93"' 

. . . ds, . . . ds, 
0GYt,G G Y , S t  

(9) 

for t 2 0, and a similar expansion for t < 0. As the perturbation [pu,, . ]  is a bounded 
derivation of 93" the series is uniformly convergent and defines a weak *-continuous 
group of *-automorphisms of 3". The infinitesimal generator 8 of the group is formally 
given by 

I a , ( x ) = a ? ( x ) +  1 i"p" 
,a1 

x [d,,((+J, b : , > - , ( u x ) ,  . ' ' b:,(6), a:(x)I. . .I1 

S = [ H, * ] 

where 

H=H,+/Lu,.  

Remark that by formulae (8)  and (9) we have arrived at a rigorous definition of 
the dynamics of the model on the appropriate von Neumann algebra of observables 
taking into account the conditions 

3. Equilibrium states 

We are interested in the equilibrium states at fixed inverse temperature p 2 0 for the 
full dynamics {a,1 r e  R} defined in (9). The strategy consists in constructing the 
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equilibrium states for the unperturbed dynamics a:', then we use the known stability 
properties of K M S  states for bounded perturbations to obtain the equilibrium states of 
the full dynamics. 

For any state w satisfying (i)-(iii), we define w to be a (a ' ,  p )  K M S  state if for all 
x, y E B:o, a weakly dense a'-invariant subalgebra of 9'' holds [ 9 ] :  

w(xaP@(Y)) = W ( Y X ) .  (10) 

We prove first that this equilibrium condition has a unique solution for the unperturbed 
evolution a'. 

Theorem 3.1. There exists a unique ( a " ,  p )  K M S  state w ;  of 9 satisfying conditions 
(i)-(iii). Using the notation ( 5 ) ,  it is given by 

where w ,  are the states of the CCR algebra A(%?-) given by 

w,( W ( f ) )  = exp[*2i Im(iA/&,f) -$(J  coth(&)f)]. (12) 

Proox First we prove that the off -diagonal components of w ;  vanish. Therefore apply 
(10) with x = a,W(f) and y = (T-. Using ( 8 b )  one gets 

w ; (c, Wf) a Pp ( g z  1) = I: ( U P Y  W ( f )  1 

0; (arc+.  W f )  1 = w ; ( g z c ,  W ( f )  ) 

w ; ( a ,  W ( f ) )  = 0. 

w I : ( ~ x w ( f ) )  = 0. 

and 

or 

Analogously, 

Therefore w ;  is of the form 

where 
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Remark that for all x, y analytic elements for the evolution a i  

w , ( x a : p Y )  = w",x!,(n+ m z ) a : p ( y ) )  

= w0p(xf(U+ m : ) a : p ( y ) )  

= wop(yx+(B+ U : ) )  

= W , ( Y X )  

hence w 1  is a (at, p )  K M S  state, and  similarly w 2  is a ( a - ,  p )  K M S  state. 
The automorphisms a* are up  to a displacement the free Bose-gas automorphisms. 

Under our general conditions / \ ' / E  and A'E L ' ( R ) ,  (i)-(iii),  they yield the unique K M S  

states w ,  given by (12) [lo]. Hence there exists 7 E [0, 13 such that 

W I  = w2= (1 - 7 ) w .  

where 7 = w , ( l )  and denote 

We have to prove that there exists only one solution, namely corresponding to the 
value 7 = f. Therefore define the reflection symmetry automorphism T on 93 by the 
following relations: 

T(ff1) = UI T ( U J  = -U> T(C73) = -U3 

.( W f ) )  = W ( - f )  f € Z -  (14) 

and remark that wrl 0 T =  w l - , .  The state w ,  with 7 = f  is then precisely the unique 
7-invariant state in (13). To prove this we use (10) again. Remark that using the 
explicit formulae for the evolution a: (8) and  for the state w ,  (12) the function 
t + w , ( m + a ? u - )  extends analytically to the complex plane and  takes the value 7 at 
t = ip. The function t + w , ( c Y ~ ( u - ) u - )  takes the value 1 - 7 at t = 0. By (10) 7 = i. 

The equilibrium state of the full model can now be computed by a perturbation of the 
equilibrium state of the solvable model {apt t E R}. In order to d o  this we need the 
perturbation technique on von Neumann algebras developed in the context of stability 
theory for K M S  states. 

Theorem 3.2. Under the conditions J dkh2&- '  <CO and J d k h 2 <  CO the full model defined 
in (9) admits for every positive p a unique ( a ,  p )  K M S  state w p  which satisfies (i)-(iii). 
Furthermore wp is normal WRT the unique (a' ,  p )  K M S  state w ;  and is given by the 
following strongly convergent perturbation expansion. Let ( X o ,  rro, no) be the G N S  

triplet of w ;  then 

where 

dsi . ds, a ? p s , ( a x )  9 . a ? p s , , ( ~ . r ) R o .  5 o=s , ,= . . .=s , s  112 
a=%+ c (-PPL)n 

n z l  

It follows that w p  is 7 invariant where T is defined in (14), and in particular w p ( u , )  = 0. 
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Proof: Using [9, theorem 5.4.41 one constructs a K M S  state w p  for a perturbed dynamics 
(Y (9) from the unperturbed a' (8).  The full dynamics a is obtained by adding a 
bounded operator pu, to the Hamiltonian. 

The state wp is given by its cyclic vector which is constructed in terms of a series 
expansion (15). As the unperturbed state w i  is the unique (a ' ,  p )  K M S  state (theorem 
3.1), it is a factor state [9, theorem 5.3.301. Hence by [9, theorem 5.4.41 up is the 
unique ( a ,  p )  K M S  state. The T invariance of w p  is then immediate. 

This theorem proves that for all finite temperatures T > O ,  there exists a unique 
temperature state. Hence there is no spontaneous breaking of the reflection symmetry 
T. Therefore the possible ground-state symmetry breaking [6] turns off abruptly at 
arbitrarily small temperatures. 

4. Transition probabilities 

In the preceding section we gave the mathematical proof of the existence and uniqueness 
of the equilibrium state of the model at any temperature T >  0. In view of the kind 
of physical system described by the model (see the introduction) the proof might be 
supplemented by more physically transparent arguments which can be provided by 
the computation of transition probabilities between the two states with fixed value of 
the spin. Clearly the explicit form of the solution wp (theorem 3.2) is constructed by 
means of the states w ,  (theorem 3.1) of the Bose field representing the two spin states. 

The unicity of the solution yields intrinsically that there is always tunnelling from 
one state to the other. 

In this section we show explicitly that in the spirit of the technique used in § 3 and  
neglecting the bounded perturbation, the transition probability w, + w-  is non- 
vanishing for all T > 0. 

First we define the mathematical notion of the transition probability between two 
arbitrary states of a Cf algebra. 

Transition probabilities between wavefunctions in the Hilbert space X P  of quantum 
mechanics are well known. Take $, , $? normalised vectors in 2, defining the states 

U,( * 1 = ($,, - $ 1 )  i = 1 , 2  

and the transition probability for the transition + $> is then given by 

P ( W I  9 4 = I ( I L I 9  4 2 ) 1 2 .  

This notion has been generalised to arbitrary states of a C* algebra as follows [ll-131. 
Let w,  ( i  = 1 , 2 )  be two arbitrary states of a Cf algebra d, suppose that T is a 

representation of d in 9( 2) and R ,  ( i  = 1 ,2 )  elements of X P  such that 

w , ( A )  = ( R , ,  .rr(A)R,) ( i  = 1, 2). (16) 

Then the transition probability P ( w l ,  w 2 )  is defined by 

P ( w 1 , w J  = supl(R1, % ) I 2  
where the sup is taken over all representations T and vectors RI for which (16) holds. 

Now we compute rigorously the transition probability P ( w + ,  w - )  where w, are 
defined in (12), as states of the CCR algebra d = A( X P - ) .  
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Theorem 4.1. With the above notations 

3 P ( w + , ~ - ) = e x p [ - 4 [  d k ( z )  A(k)  ’ tanhfPE(k)  . 
(18) 

Proof: First we construct the representations for the states U,. As representation space 
take X =  XFOXF where XF is the Fock space built on the test function space L?(R). 
As representation consider the map 

T :  W(f) + n-( W(f) = exp(2i Im(iA/&,f)) W(i(A+O))”2f)0  W(I(A -3))”’f) 

where A is the multiplication operator by coth $ E  and where 
conjugate. 

triplet of U+ and 

- 
denotes the complex 

Take R+ = R F O R F ,  where R F  is the Fock vacuum; then (Z,  r , R + )  is the G N S  

w+(x) = ( R + ,  n - ( x ) f l + )  x E A( Z-).  

Denote 

a-( W k I ) O  W(gJ)R+ 

with 

. ( 2 ( A + l ) ) ’  ’ A 
A E 

.(2(A-U))”‘ A 
A E 

- g,  = -1 

- g, = -1 

Then one easily checks that 

w-(x) = (0-, n-(x)R-) X E A ( Z - )  

and by (17) one has that 

P ( w + , w - ) ~ ~ ( R + , R - ) ~ ‘ =  4 -4 j d k  (: -(k) )* t anh faa (k ) )  

yielding a lower bound for the transition probability. 
Now we derive an upper bound, using the property [12] 

P ( W + I d ,  w - l + ) c  P ( W + l d I ,  W - l d , )  

where d, is any C* subalgebra of d. Here we will use Abelian subalgebras. Take as 
subalgebra the von Neumann algebra generated by the spectral family {e( B) I B Borel 
subset of R} of the element W ( f )  for some fixed O # f f  X - ,  i.e. 

e“ de((  -CO, t ] ) .  W(f) = i 
One defines the measures pI over the Borel sets of R: 

4 B )  = wL(e(B)) .  
A straightforward computation, using the explicit formulae (12), yields 
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with 

x = Im(iA/&, f )  

Y = ( f, Af > 0. 

Hence both measures p+ are absolutely continuous with respect to the Lebesgue 
measure d t  and by [13] 

We choose 

f = ( A / & )  tanh $ E  E 2?- 

and compute 

(%)"(+)"ldt=exp[Z 1 dk(;(k))*tanh&(k) 1 . 
Combining the upper and lower bounds yields the proof of the theorem. 

This theorem yields an understanding of the fact that, under the conditions (2), for 
finite temperature T > 0 there always exists a finite transition probability between the 
two spin states, there is no infinite barrier, the states do not represent distinct phases, 
there is no symmetry breaking and one should have a unique equilibrium state, as was 
proved in § 3. In fact, although the computation of the theorem above is meant for a 
better physical understanding of the phenomenon, it is also possible to use it as the 
basis of a rigorous proof. Indeed, a strictly positive transition probability implies the 
quasi-equivalence of the states w+ and U - ,  which is the basic mathematical argument 
behind the property of theorem 3.1 [7]. 

Furthermore, formula (18) indicates that for the ground state ( T  = 0), there is still 
quantum tunnelling ( P (  w + ,  w - )  > 0) as long as A /  E E L2.  The transition probability 
vanishes if A l e e  L 2 .  This condition turns up in [6] as a sufficient condition for 
symmetry breaking. This condition is also suggested by a first-order perturbation 
calculation in the parameter p. Indeed, if p = 0, the ground state is two-fold degenerate 
and the two states are explicitly given by 

U $ , + (  W f ) O X )  = e , ( X )  exp[*2i Im(iA/E,f) -tlIfll'l 
where 

for e+ 
for e - .  

e , ( X )  = 

The states W O , , ,  are orthogonal vector states 

W O , , * ( .  1 = (@*, .@*I 
represented by the vectors 
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where R, are the cyclic vectors of w ,  and satisfying 

If Eo is the ground-state energy in the states U = ,  the first-order Rayleigh-Ritz perturba- 
tion calculation of the perturbed energy yields the values 

E , , ,=E,*pexp - 2  d k  - (k )  [ I (a  )’3 
showing that the degeneracy disappears if A / &  E L’, and remains if A / &  & L’. 
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